Down-regulation of the cardiac sarcoplasmic reticulum ryanodine channel in severely food-restricted rats.

نویسندگان

  • V A Vizotto
  • R F Carvalho
  • M M Sugizaki
  • A P Lima
  • F F Aragon
  • C R Padovani
  • A V B Castro
  • M Dal Pai-Silva
  • C R Nogueira
  • A C Cicogna
چکیده

We have shown that myocardial dysfunction induced by food restriction is related to calcium handling. Although cardiac function is depressed in food-restricted animals, there is limited information about the molecular mechanisms that lead to this abnormality. The present study evaluated the effects of food restriction on calcium cycling, focusing on sarcoplasmic Ca2+-ATPase (SERCA2), phospholamban (PLB), and ryanodine channel (RYR2) mRNA expressions in rat myocardium. Male Wistar-Kyoto rats, 60 days old, were submitted to ad libitum feeding (control rats) or 50% diet restriction for 90 days. The levels of left ventricle SERCA2, PLB, and RYR2 were measured using semi-quantitative RT-PCR. Body and ventricular weights were reduced in 50% food-restricted animals. RYR2 mRNA was significantly decreased in the left ventricle of the food-restricted group (control = 5.92 +/- 0.48 vs food-restricted group = 4.84 +/- 0.33, P < 0.01). The levels of SERCA2 and PLB mRNA were similar between groups (control = 8.38 +/- 0.44 vs food-restricted group = 7.96 +/- 0.45, and control = 1.52 +/- 0.06 vs food-restricted group = 1.53 +/- 0.10, respectively). Down-regulation of RYR2 mRNA expressions suggests that chronic food restriction promotes abnormalities in sarcoplasmic reticulum Ca2+ release.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Serial changes in sarcoplasmic reticulum gene expression in volume-overloaded cardiac hypertrophy in the rat: effect of an angiotensin II receptor antagonist.

This study was designed to clarify whether gene expression in the cardiac sarcoplasmic reticulum [sarcoplasmic reticulum Ca2+-ATPase (SERCA), phospholamban, ryanodine receptor and calsequestrin] changes in accordance with left ventricular functional alterations in the volume-overloaded heart. Further, the effect of the angiotensin II type 1 receptor antagonist, TCV-116, on the expression of the...

متن کامل

Regulation of cardiac muscle Ca2+ release channel by sarcoplasmic reticulum lumenal Ca2+.

The cardiac muscle sarcoplasmic reticulum Ca2+ release channel (ryanodine receptor) is a ligand-gated channel that is activated by micromolar cytoplasmic Ca2+ concentrations and inactivated by millimolar cytoplasmic Ca2+ concentrations. The effects of sarcoplasmic reticulum lumenal Ca2+ on the purified release channel were examined in single channel measurements using the planar lipid bilayer m...

متن کامل

Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase a.

beta-Adrenergic receptor (betaAR) signaling, which elevates intracellular cAMP and enhances cardiac contractility, is severely impaired in the failing heart. Protein kinase A (PKA) is activated by cAMP, but the long-term physiological effect of PKA activation on cardiac function is unclear. To investigate the consequences of chronic cardiac PKA activation in the absence of upstream events assoc...

متن کامل

Sphingosylphosphocholine modulates the ryanodine receptor/calcium-release channel of cardiac sarcoplasmic reticulum membranes.

Sphingosylphosphocholine (SPC) modulates Ca2+ release from isolated cardiac sarcoplasmic reticulum membranes; 50 microM SPC induces the release of 70 80% of the accumulated calcium. SPC release calcium from cardiac sarcoplasmic reticulum through the ryanodine receptor, since the release is inhibited by the ryanodine receptor channel antagonists ryanodine. Ruthenium Red and sphingosine. In intac...

متن کامل

Digestion of cardiac and skeletal muscle junctional sarcoplasmic reticulum vesicles with calpain II. Effects on the Ca2+ release channel.

The Ca2+ release channel and ryanodine receptor are activities copurifying with the 400,000-450,000 Da high molecular weight protein of cardiac and skeletal junctional sarcoplasmic reticulum. Calpain II, an endogenous cytosolic protease, was used to selectively degrade the high molecular weight protein in cardiac and skeletal muscle sarcoplasmic reticulum vesicles, and its effects on the activi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas

دوره 40 1  شماره 

صفحات  -

تاریخ انتشار 2007